Determination of Students’ Ability to Prepare for the Course “Integral Equations”
3 9
Keywords:
students, integral equations, level of education, arch, academic performance, vector.Abstract
The prerequisites for organizing professional education in higher education institutions to enhance students' knowledge through elective courses are discussed in the article. The importance of widely using students' problem-solving readiness, the potential for mastering theoretical concepts, and cognitive activities is emphasized. The necessity of paying attention to the completed courses was emphasized for the improvement of students’ cognitive activity and the development of their theoretical, practical, and independent work using a motivating method. It is acknowledged that the basis for organizing education and improving the learning process lies in interdisciplinary connections. The learner’s living environment, interaction with society, human qualities, knowledge, and the assessment of these by society are discussed, and the idea of assigning scores in relation to their social environment is examined. In particular, questions are raised regarding the influence of the environment on the learner, what should be prioritized in determining the learner’s level and direction, whether it is possible to consistently guide the level of knowledge, whether increasing the learner’s level depends on fundamental issues of mathematics, and other related questions are explored. Information about natural sciences, humanities, and the environment influencing the learner is considered in interdependence when scores are assigned to the learner. Particular attention was drawn to the importance of not overlooking such aspects as social and everyday life, culture – the maintenance of interaction with the environment, and language – as a means of communication. Based on the conducted survey, the importance of students being consistently active in society in order to work in their professional field has been illustrated in the Cartesian coordinate system.
References
ПАЙДАЛАНЫЛҒАН ӘДЕБИЕТТЕР ТІЗІМІ
Калимбетов Б.Т., Омарова И.М., Сапаков Д.А. Білім беруді цифрландыру жағдайында
математика бакалаврларына функцияларды графикалық кескін түрінде көрсетуді үйрету // Ясауи
университетінің хабаршысы. – 2023. – №1 (127). – Б. 215–224. https://doi.org/10.47526/2023-
/2664-0686.18
Ахметжанова Г.В., Антонова И.В. Применение методов математической статистики в психолого-
педагогических исследованиях: электронное учебное пособие. – Тольятти: Изд-во ТГУ, 2016. – 1
оптический диск.
Adeniran O.J., Bankole A., Ajibola S.O. Integral equations: work & learn. – National Open University
of Nigeria, 2014. – 73 p.
Көлекеев К.Д., Назарова К.Ж. Дифференциалдық теңдеулер: оқулық. – Алматы: Дәуір, 2012. –
б. 5. Фильченков С.Е. Применение интегральных уравнений второго рода в теории периодически нерегулярных электродинамических систем: автореф. ... канд. ф.-м.наук. – Нижний Новгород, 2005. – 16 с.
Орынбасаров М., Сахаев Ш. Интегралдық тендеулер курсы: оқу құралы. – Алматы: Қазақ университеті, 2014. – 208 б.
Минькова Р.М. Векторный анализ: учебное пособие. – Екатеринбург: ГОУ ВПО УРФУ, 2013. – 69 с. 8. Монсик В.Б., Скрынников А.А. Вероятность и статистика: учебное пособие. – М.: БИНОМ. Лаборатория знаний, 2011. – 381 с.
Аладьев В.З., Бойко В.К., Ровба Е.А. Программирование в пакетах Maple и Mathematica: Сравнительный аспект. – Гродно: Гродненский гос. унив. им. Янки Купалы, 2011. – 517 с.
Красова Т.Д., Чуйкова Ж.В. Методология и методы научных исследований в психологии и педагогике: учебное пособие. – Елец: Елецкий гос. унив. им. И.А. Бунина, 2021. – 68 с.
REFERENCES
Kalimbetov B.T., Omarova I.M., Sapakov D.A. Bіlіm berudі cifrlandyru jagdaiynda matematika bakalavrlaryna funkcialardy grafikalyq keskіn turіnde korsetudі uiretu [Teaching Bachelors of Mathematics with Graphical Representation of Functions in the Context of Digitalization of Education] // Iasaui universitetіnіn habarshysy. – 2023. – №1 (127). – B. 215–224. [in Kazakh] https://doi.org/10.47526/2023-1/2664- 0686.18 [in Kazakh] 2. Ahmetjanova G.V., Antonova I.V. Primenenie metodov matematicheskoi statistiki v psihologo-pedagogicheskih issledovaniah: elektronnoe uchebnoe posobie [Application of mathematical statistics methods in psychological and pedagogical research: an electronic textbook]. –Toliatti: Izd-vo TGU, 2016. – 1 opticheski disk. [in Russian]
Adeniran O.J., Bankole A., Ajibola S.O. Integral equations: work & learn. – National Open University of Nigeria, 2014. – 73 p.
Kolekeev K.D., Nazarova K.J. Differensialdyk tendeuler: oqulyq [Differential equations: textbook]. – Almaty: Dauir, 2012. – 216 b. [in Kazakh]
Filchenkov S.E.Primenenie integralnyh uravneniy vtorogo roda v teori periodicheski nereguliarnyh elektrodinamicheskih sistem: avtoref. ... kand. f.-m. nauk. [Application of integral equations of the second kind in the theory of periodically irregular electrodynamic systems: abstract]. – Nijni Novgorod, 2005. – 16 s. [in Russian]
Orynbasarov M., Sahaev Sh. Integraldyq tendeuler kursy: oqu quraly [Integral tenders course: training manual]. – Almaty: Qazaq universıtetі, 2014. – 208 b. [in Kazakh]
Mınkova R.M. Vektornyi analiz: uchebnoe posobie [Vector analysis: a textbook]. – Ekaterınburg: GOU VPO URFU, 2013. – 69 s. [in Russian]
Monsik V.B., Skrynnikov A.A. Veroiatnost i statistika: uchebnoe posobie [Vector analysis: a textbook]. – M.: BINOM. Laboratoria znaniy, 2011. – 381 s. [in Russian]
Aladev V.Z., Boiko V.K., Rovba E.A. Programmirovanie v paketah Maple i Mathematica: Sravnitelnyi aspect [Programming in the Maple and Mathematica packages: A comparative aspect]. – Grodno: Grodnenskiy gos. univ. im. Ianki Kupaly, 2011. – 517 s. [in Russian]
Krasova T.D., Chuikova J.V. Metodologia i metody nauchnyh issledovani v psihologii i pedagogike: uchebnoe posobie [Methodology and methods of scientific research in psychology and pedagogy: a textbook]. – Eles: Eleski gosudarstvennyi universitet im. I.A. Bunina, 2021. – 68 s. [in Russian]